

Magic Internet Kit

Programmer’s Guide

September 6, 1996

Copyright © 1996 General Magic, Inc.

All rights reserved.

License

Your use of the software discussed in this document shall be permitted only pursuant to the terms in a software license between
you and General Magic.

Trademarks

The General Magic logo, the Magic Cap logo, the Telescript logo, Magic Cap, Telescript, and the rabbit-from-a-hat logo are
trademarks of General Magic, and may be registered in certain jurisdictions.

All other trademarks and service marks are the property of their respective owners.

Limit of Liability/Disclaimer of Warranty

THIS BOOK IS SOLD “AS IS.” Even though General Magic. has reviewed this book in detail, GENERAL MAGIC MAKES
NO REPRESENTATION OR WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK. GENERAL MAGIC SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE AND SHALL IN NO EVENT BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL
DAMAGE, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER
DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some states do not allow for the
exclusion or limitation of implied warranties or incidental or consequential damage. So, the exclusions in this paragraph might
not apply to you. This warranty gives you specific legal rights. You may also have other rights which vary from state to state.

Josh and Ed’s Excellent Internet Kit

Lyrics and electric banjo by Josh Carter. Drums and synths by Ed Satterthwaite. Backing vocals by Zarko Draganic and C.J.
Silverio. Tour management by Mark “The Red” Harlan.

Get out the banjo and let’s boogie to this

Restricted Rights. For defense agencies: Use, duplication, or disclosure is subject to the restrictions set forth in subparagraph
(c)(1)(ii) of DFAR section 252.227-7013 and its successors. For civilian agencies: Use, duplication, or disclosure is subject to
the restrictions set forth in subparagraphs (a) through (d) of FAR section 52.227-19 and its successors. Unpublished—rights
reserved under the copyright laws of the United States.

General Magic

420 North Mary Avenue Telephone: 408 774 4000
Sunnyvale Fax: 408 774 4010
California 94086 USA E-mail: dev-info@genmagic.com

URL: http://www.genmagic.com/

Patent Pending

Portions of the Magic Cap software and the Telescript software are patent pending in the United States and other countries.

General Magic Magic Internet Kit iii

Table of Contents

Introduction . 5

Real connectivity made real easy . 5
What you should already know . 6
About this document . 7

Creating a New Package . 9

Automated package creation . 9
The New Comms App dialog . 10

Where to go from here . 12

Connecting to the World . 13

The ConnectableMeans class . 13
Methods of ConnectableMeans . 13
CreateConnection error handling . 15
Using ConnectableMeans: an example . 15
MIK’s ConnectableMeans subclasses . 17

Serial communications . 17
ModemMeans . 17
MagicBusModemMeans . 18
SerialPortMeans . 18

TCP/IP communications . 18
DialupPPPMeans . 19
MagicBusPPPMeans . 20
XircomMeans . 20
Behind the scenes with TCP/IP . 21

Example: Finger Client . 22
Multithreading with Actors . 28

Actor concepts . 29
Creating an actor . 29
Using an actor . 30
Destroying an actor . 30
Moving between actors . 31
Actors in the Magic Internet Kit . 33

Serial Communications in Depth . 35

Table of Contents

iv Magic Internet Kit General Magic

Using ConnectableMeans vs. low-level APIs . 35
Introducing the SerialServer and Modem classes . 36
Using the modem . 36

Connecting the modem . 36
Using a live modem connection . 38
Disconnecting the modem . 39
Detecting Loss of Carrier . 39
Dispelling myths and stuff to avoid . 40

TCP/IP Communications in Depth . 43

Using ConnectableMeans vs. low-level APIs . 43
Link servers, protocol stacks, and streams, oh my! . 44

The data link server . 44
Internet Protocol (IP) . 44
Transmission Control Protocol (TCP) . 45
User Datagram Protocol (UDP) . 45

Managing data link servers . 45
Determining if a link server is already in place . 46
Stating a new link server . 46
Destroying a link server . 47

Creating and using TCP streams . 48
Creating a TCP stream and initiating a connection . 48
Listening for an incoming TCP connection . 49
Using a TCP stream . 49

Resolving host names with DNS . 51
DNS in the Magic Internet Kit framework . 51
Using DNS manually . 52
Persistence of DNS . 53

More to follow . 53

Reference . 55

This section is not yet completed - see our web site for an update 55

General Magic Magic Internet Kit 5

Introduction

Real connectivity made real easy

The Magic Internet Kit is a complete development kit for creating Magic Cap
applications that communicate in a variety of ways. The heart of the Magic Internet
Kit is a powerful yet easy-to-use object framework that provides:

• TCP/IP support for writing full-featured Internet/Intranet applications.

• Supporting protocols for TCP/IP such as PPP, with PAP and CHAP
authentication, and DNS for resolving host names.

• Serial communications over a communicator's built-in modem and MagicBus
port.

• Native PPP and serial support for external modems, including Metricom's
Ricochet wireless modem.

From the first steps of creating a communicating application to maintaining the code
later, the Magic Internet Kit makes your work easy and your development cycle fast.
From the very beginning, you can use MIK’s automated package creation helper tool
to create an application with exactly the functionality that you want.

In addition to being able to pick and choose the functionality for your new
application, you can also use one of several templates provided with MIK to get you
started right where you want to be. These templates range from an “empty” package
with no user interface to a ready-to-go terminal package.

Introduction

6 Magic Internet Kit General Magic

While the handy package creation tools help you get started quickly, the real power
of the Magic Internet Kit lies in its robust and flexible programming interfaces. This
framework is arranged to provide you with a single set of methods that you can call
to create any type of communications stream you want.

Figure 1 Magic Internet Kit layout

Any of the blocks in the above figure below the API can be dropped out or replaced
with no effects on other blocks beside it. For example, if your application does not
need serial modem or MagicBus support, these components can be left out with no
adverse effects on TCP/IP. Thanks to this modular design, the Kit’s framework is
easily updateable when new modules are developed or current ones are enhanced.
Additionally, all of the Internet Kit, with the exception of the low-level TCP/IP
parts, is provided as fully documented and commented source code, so you can
modify it if your application requires it.

What you should already know

The

Magic Internet Kit Programmer’s Guide

 assumes that you are familiar with the
basics of TCP/IP and related protocols. If you need an introduction, we recommend
you read

Internetworking with TCP/IP

 by Douglas Comer or

TCP Illustrated

 by
Richard Stevens. If you don’t want to write TCP/IP applications, then you don’t
need to worry; the Magic Internet Kit also works directly using the modem or serial
port.

This document also assumes that you are somewhat familiar with Magic Cap
development. If you need to find out more about the basics of writing a Magic Cap
application, see Barry Boone’s

Magic Cap Programmer’s Cookbook

. The

Cookbook

steps you through the Magic Cap concepts that you need to know. Additionally, you
can locate more information from General Magic’s

Magic Cap Development
Overview

 web page located at:

http://www.genmagic.com/Develop/MagicCap/Overview/index.html

Introduction

General Magic Magic Internet Kit 7

One specific aspect of writing a Magic Cap application, exception handling, is also
very important for using the Kit. For more information on how to use exceptions,
read the “Handling Exceptions” chapter of

Magic Cap Concepts

. Don’t worry if you
are new to exceptions; the code snippets and templates provided with the Magic
Internet Kit illustrate how to write the handlers you need. The online version of

Magic Cap Concepts

 is located at:

http://www.genmagic.com/Develop/MagicCap/Docs/Concepts/index.html

About this document

The

Magic Internet Kit Programmer’s Guide

 documents the Kit from the high-level
APIs to the low-level device drivers. The

Guide

 starts with a discussion of the
automated tools and templates available for creating a package, and then proceeds
on to discussing the high-level APIs for communications work. Later chapters dive
into detail about TCP/IP and multithreaded communications functionality. This
document also includes a reference section for all of the communications classes that
are included in the Magic Internet Kit.

Note:

This document is constantly evolving, but our web site will always have the
latest version. As of this writing, the Reference section is not yet completed, and the
“In Depth” chapters still have room to grow. Be sure to check our web site for the
latest copy of the

Guide

 at:

http://www.genmagic.com/Develop/MagicCap/Internet/index.html

Introduction

8 Magic Internet Kit General Magic

General Magic Magic Internet Kit 9

Creating a New Package

Automated package creation

The typical first step in creating a Magic Cap application is cloning an existing
package. The Magic Internet Kit takes this much farther, though, and allows you to
customize your new communicating application’s features with an easy-to-use dialog
box.

Additionally, MIK provides several template packages to start from, so you can pick
the perfect starting point for your own development. These templates start at the
most basic “empty” communications package and go up to a dumb terminal package
with complete user interface.

Note:

If you are already familiar with developing Magic Cap applications, you are
probably familiar with the

Clone Package

 feature of the Magic Developer
environment. You do not want to use this script when cloning a MIK template; use
the

New Comms App

 feature instead. The template make files that come with the
Magic Internet Kit are designed to be modified by the new menu item’s script, so it’s

best not to mess with them directly.

Creating a New Package

10 Magic Internet Kit General Magic

The New Comms App dialog

MIK’s

New Comms App

 dialog is accessed from the

Magic NewCommsApp

 menu in
your Macintosh Programmer’s Workshop (MPW) environment. From here you can
click on the checkboxes for the types of features you want in your new application.

Figure 2 NewCommsApp script dialog

Note:

If you are familiar with MPW, you’ll notice that this dialog box is really a

Commando

 interface to a MPW script.

Connection types and hardware support

The first part of

New Comms App

 to look at is the

Connection Types

 section. There
are two options in here: Serial and TCP/IP.

Serial

 means direct serial
communications; for example using the serial port to read and write raw bytes of
data. The

TCP/IP

 connection type uses Transmission Control Protocol/Internet
Protocol to communicate with remote hosts, for example a web server.

The next section to look at,

Hardware Support

, deals with what physical means that
you’ll use for communicating. These options are dependent on what connection
types you have set up, for example you cannot use the Xircom Netwave PC Card for
a direct serial connection. Don’t worry if you’re not familiar with all of the hardware
or connection types; these will all be discussed shortly. The following tables illustrate
how the hardware and connection types are interrelated:

Hardware Serial Connection

Built-in Modem Serial modem

Serial port Direct serial via MagicBus port

MagicBus Modem Serial via external modem on MagicBus port

Xircom Netwave (not available)

Figure 3 Serial connection types vs. hardware support

Creating a New Package

General Magic Magic Internet Kit 11

In the above table, the Built-in modem refers to the internal modem that is present
in all Magic Cap communicators. The serial port refers to using a communicator’s
MagicBus port as a passive serial port. The next two options, MagicBus modem and
Xircom Netwave, use custom drivers that are included with the Magic Internet Kit.
These drivers are provided as source code so that you can learn from and modify
them if you so desire. The MagicBus modem driver lets you use an external modem
connected to the MagicBus port via the same APIs as the internal modem. For
example, you can use this driver to provide native support for Metricom’s Ricochet
wireless modem. The Xircom Netwave driver allows you to use these PC Cards as a
data link server for MIK’s TCP/IP stack. These two drivers will be discussed in much
greater detail in later chapters.

The third part of

New Comms App

 to consider is the section for

TCP Options

. This
section only contains one checkbox for the DNS resolver. As you might imagine, this
option only applies to TCP/IP connections; if you don’t use TCP/IP, this box will
be grayed out. If you are using TCP/IP, DNS will allow you to specify symbolic host
names as the destination for a TCP stream instead of needing IP numbers. For
example, “www.genmagic.com” could be used as a valid destination name instead of
it’s IP address, which is currently 192.216.22.142.

The final section of

New Comms App

 is used to select the template to use when
creating the new package. The following section explains the features of each
template.

Magic Internet Kit templates

Now that you know how you’re going to communicate, it’s handy to start with some
work already done for you, and that’s exactly what MIK’s application templates are
for. Say you want to brew up an application, and you want to let the user set up var-
ious options for the connection. You could then find a template with an interface
that’s close to what you want, and use this as the starting point for your new appli-
cation.

This section will discuss the templates that are included with the Magic Internet Kit
so you can decided which ones you want to use for your own projects.

Terminal (a.k.a. CujoTerm)

This is the classic TTY terminal package. When you use CujoTerm as your template,
you get a simple terminal that you can connect to a remote host over whatever
connections means you set up in the

New Comms App

 dialog. This is a good template
to use for testing out code or investigating protocols. For example, if you wanted to

Hardware TCP/IP Connection

Built-in Modem PPP via built-in modem

Serial port (not available)

MagicBus Modem PPP via external modem on MagicBus port

Xircom Netwave Wireless Ethernet via Xircom Netwave card

Figure 4 TCP/IP connection types vs. hardware support

Creating a New Package

12 Magic Internet Kit General Magic

write a package that knew how to send email via SMTP, you could use CujoTerm
to make sure that the commands you are sending to the server are actually doing the
right thing. Additionally, since CujoTerm works “out of the box,” you can use it as
a good sample package to learn from.

CujoTerm comes with a user interface for setting up connections, and you may find
these components useful in your own application. The UI for setting up the
connection is totally independent of the terminal code, so you can tear up the other
parts of CujoTerm and the setup scene will still work.

Another key component of CujoTerm is its architecture; this terminal, while basic
in user-level features, has an advanced multi-threaded structure behind it that can
even support multiple simultaneous TCP/IP connections. The two key classes that
implement this functionality are the

CommsActor

 and

CommsManager

. The code
that executes on its own thread is part of the CommsActor, and the CommsManager
is used to easily create and destroy CommsActors. Both of these classes will be
discussed in much greater detail in the Multithreaded Communications chapter of
this document.

EmptyWithFrills

The EmptyWithFrills package is similar to the

Empty

 template discussed below, but
it also contains some user interface and multithreading frills from CujoTerm. The
UI in EmptyWithFrills is the same as CujoTerm’s setup scene. This allows you to
easily create or prototype applications without worrying about setting up the
connection options. Additionally, EmptyWithFrills includes the CommsActor and
CommsManager classes from CujoTerm, but the terminal-specific code is removed
so that you can easily add in your own functionality.

Empty

As you might imagine, the Empty template is pretty sparse. This package is the same
as Magic Developer’s EmptyPackage template, except that this version has its MPW
make file already set up to communicate using the means that were selected in the

New Comms App

 dialog box.

Where to go from here

Now that you’re all set up with a clone of your preferred template, it’s time to make
it do some real work. The next chapter, Connecting to the World, shows you how
to connect to a remote host, use the connection, and then destroy it when you’re
done.

General Magic Magic Internet Kit 13

Connecting to the World

The heart of the Magic Internet Kit is the easy-to-use object framework for
connecting your application to the outside world. This act can take several forms,
from serial communications to TCP/IP over a variety of data links. This chapter
describes the interfaces that your packages can use to create, use, and destroy links to
remote hosts.

The ConnectableMeans class

In Magic Cap, a

Means

 subclass specifies details about a connection that your
application wants to create. For example, a

TelephoneMeans

 object holds a phone
number for a basic serial modem connection. These objects don’t actually do the
connecting, rather they just specify parameters.

The Magic Internet Kit takes this concept of a Means object much farther by
defining a

ConnectableMeans

 class. This is a Means object mixin that knows how
to connect itself to the outside world in some way. Due to the fact that this class is a
mixin, it is never instantiated directly, but rather is “mixed in” with existing means
objects. The resulting subclasses then implement the methods defined by
ConnectableMeans.

All of the Magic Internet Kit’s connection classes inherit from ConnectableMeans.
For example, the

DialupPPPMeans

 object implements a version of
ConnectableMeans that knows how to create TCP/IP connections using PPP over a
Magic Cap communicator’s built-in modem.

Source Code Note:

The ConnectableMeans class definition can be found in the

Means:ConnectableMeans.Def file.

Methods of ConnectableMeans

There are three methods defined by ConnectableMeans: CanCreateConnection,
CreateConnection, and DestroyConnection. The methods do what they sound like,
and we’ll cover what each one does in detail.

Connecting to the World

14 Magic Internet Kit General Magic

CanCreateConnection

operation CanCreateConnection(): Boolean, noMethod;

This method is called by client code to determine if a connection could potentially
be established. For example, if this ConnectableMeans subclass communicates using
the modem, CreateConnection could check to see if the phone line is plugged in,
make sure the user has set up a dialing location, and also check that the modem is
not already in use.

The application calling CanCreateConnection should be aware that the boolean
return value is not a guarantee that a connection attempt will succeed. There are
many factors that can effect the success of a connection attempt, and many of these
cannot be judged until the attempt is actually made. For example, if the object
communicates using the modem, and the remote server is not answering, the object
won’t know that until after dialing. CanCreateConnection therefore should only be
counted on as a “sanity check” before doing any real work to try connecting.

CreateConnection

operation CreateConnection(): Object, noMethod;

CreateConnection is the method used to connect a ConnectableMeans subclass to a
remote host. If the connection attempt succeeds, this method will return the Object
ID of the new stream to be used. The stream returned from CreateConnection is
always a subclass of CommunicationStream, for example the

Modem

 class for serial
modem connections, or the TCPStream class for TCP/IP connections.

If the connection attempt fails, CreateConnection will throw a ConnectException
heavyweight exception. Heavyweight exceptions are somewhat different than typical
lightweight exceptions used in other parts of Magic Cap, so these will be discussed
shortly in the following CreateConnection error handling section.

Note: With TCP/IP connections, you can actually call CreateConnection repeatedly
to get multiple streams. See the chapter on TCP/IP Communications in Depth for
more information.

DestroyConnection
operation DestroyConnection(stream: Object), noMethod;

DestroyConnection is the inverse of CreateConnection; whenever a stream is no
longer needed, this method is used to destroy it in whatever manner is appropriate
for the specific ConnectableMeans subclass. This method should also destroy any
objects or buffers that were allocated by CreateConnection. For example, if
CreateConnection creates a TCPStream object, DestroyConnection will be sure to
destroy that object.

Connecting to the World

General Magic Magic Internet Kit 15

CreateConnection error handling
As a general rule with communications, connecting to a remote host requires quite
a few things to all work together with each other, and therefore there are many
potential places for things to go wrong. Errors in Magic Cap are typically handled
with lightweight exceptions that get thrown when the error occurs and are then
caught by code designed to specifically handle that error. The lightweight exception
itself is really just an unsigned value that translates into an error code listed in the
Exceptions.h file in the Magic Cap interfaces. For more information on handling
these types of exceptions, see Magic Cap Concepts.

With the multitude of possible errors that could happen when connecting, an
application using the lightweight exception model would have to catch almost a
dozen distinct types of exceptions. The code for just setting up the error handling
could be pages long! The Magic Internet Kit takes a slightly different but much
cleaner approach by using heavyweight exceptions.

A heavyweight exception is very much like a lightweight exception in how it is used,
but in this case the exception is not an error code but rather a real, live object. In the
case of CreateConnection, the object that is thrown is a ConnectException or one
of its subclasses. Code that is calling CreateConnection, therefore, needs to catch
objects of the ConnectException class. The magical method that does this is called,
quite reasonably, CatchByClass. CatchByClass will catch all exception objects of a
specified class and all of its subclasses. To catch all connect-time errors, catch the
ConnectException class. For only errors that deal with hardware, you can catch the
HardwareConnectException class, which is a subclass of ConnectException. TCP/
IP errors are thrown with TCPConnectException and IPConnectException objects,
respectively. Most applications, though, will just want to catch ConnectException
since it specifies all of the necessary details about the error in an attribute.

The ConnectException object has an attribute named ConnectError. The value of
this attribute is an error code that specifies what exactly went wrong during the
connection attempt. The error codes are listed in the MIKErrors.h file in the Magic
Internet Kit’s “Includes” file. Applications can then check for specific errors, or even
check for a category of error by masking off bits. The errors are grouped by hex digit,
so to see if the error had something to do with DNS, for example, a simple bitwise
AND like the following will do the trick:

Now let’s take all of this information and see what it looks like in real, live code.

Using ConnectableMeans: an example
A quick example of using a ConnectableMeans subclass is in order. In this example,
we will connect the Magic Cap communicator’s built-in modem to a remote host.
This will be a simple serial connection, so the only information we need about the
remote host is its phone number.

The first step in this example is creating the objects that we’ll need. The
ModemMeans object is perfect for what we need to do; it’s designed exactly for
doing direct serial connections using the modem. For more information on this
class, see the Serial Communications in Depth chapter of this document.

if (error & errorDNSMask) /* it’s a DNS error */

Connecting to the World

16 Magic Internet Kit General Magic

The following code defines and creates the ModemMeans object and the
Telenumber object that holds the text of the destination number.

Now we can “fill in” the Telenumber and set the means object’s Telenumber
attribute appropriately.

Now we get to the fun part. Let’s call CanCreateConnection to see if we have a
chance at connecting.

Once that test is passed, we’ll want to set up error handling code for
CreateConnection. To do this, we’ll use the CatchByClass method mentioned
above.

If we’ve gotten this far, call CreateConnection to connect the modem to the remote
host.

At this point we have a real, live connection. In the error case, CreateConnection
failed up to the above exception handler, so our code can go on assured that the
connection attempt worked. Let’s commit the exception handler and then write
some bytes to the stream.

ObjectID means = NewTransient(ModemMeans_, nil);
ObjectID telenumber = NewTransient(Telenumber_, nil);
ObjectID stream;
ObjectID exception;

ReplaceTextWithLiteral(Telephone(telenumber), "(800) 555-1212");
SetTelenumber(means, telenumber);

if (!CanCreateConnection(means))
{
 /* error case */
 return false;
}

if ((exception = CatchByClass(ConnectException_)) != nilObject)
{
 /* The error code is specified by the ConnectError attribute. */
 Unsigned error = ConnectError(exception);

 /* Figure out the error type */
 switch (error)
 {
 /* Do what's appropriate here for the errors listed in */
 /* MIKErrors.h */
 }

 /* The exception object should be destroyed now that we're done */
 /* with it. */
 Destroy(exception);

 return false;
}

stream = CreateConnection(means);

Commit();

Write(stream, "hello there!", 12);

Connecting to the World

General Magic Magic Internet Kit 17

Finally, let’s destroy the connection. For this example, we won’t need the means
object anymore, so destroy that, too.

MIK’s ConnectableMeans subclasses
As mentioned above, the Magic Internet Kit comes with several subclasses of
ConnectableMeans for you to use. These can be broken down into two categories:
serial based and TCP/IP based. Each category and its classes will be discussed
individually in the following sections.

Serial communications
Serial communications, for MIK’s purposes, will be defined as opening a raw data
stream to a remote host without the aid of software protocols like TCP/IP. This
includes slamming bits down to the serial port or connecting the modem to a remote
host. There are three ConnectableMeans subclasses that are serial-based:
ModemMeans, MagicBusModemMeans, and SerialPortMeans. Each of these classes
will be discussed briefly, and for more information see the Reference section of this
guide.

ModemMeans
Class ModemMeans, as mentioned earlier in the ConnectableMeans example code,
communicates using a Magic Cap communicator’s built-in modem. If a connection
attempt is successful, the stream returned from CreateConnection will be the
iModem indexical. Application code can read and write from iModem since it
inherits from CommunicationStream, and then DestroyConnection knows how to
properly disconnect it.

ModemMeans inherits from TelephoneMeans and mixes in ConnectableMeans.
This class does not add any additional fields, so a typical instance of this class looks
the same as a TelephoneMeans instance, for example:

An example use of ModemMeans would be to talk to a bulletin board system (BBS)
that allows direct dial-in via modem. Then the client application could do whatever
it needed to, e.g. process mail or files, and disconnect. One advantage of this type of
connection is that it is simple to set up and implement. On the flip side of this,

DestroyConnection(means, stream);
Destroy(means);

Instance ModemMeans 402;
 reservationTime: 0;
 telephoneNumber: (Telenumber 403);
End Instance;

Instance Telenumber 403;
 country: 1;
 extension: nilObject;
 telephone: (Text 404);
End Instance;

Instance Text 404;
 text: '(800) 555-1212';

End Instance;

Connecting to the World

18 Magic Internet Kit General Magic

though, is that it is not as functional as a modem connection using Point-to-Point
Protocol (PPP), especially since a raw modem stream does not have inherent error
correction and recovery built in, whereas PPP does.

Source Code Note: The ModemMeans class is defined in Means:ModemMeans.Def
and implemented in Means:ModemMeans.c

MagicBusModemMeans
This class is much like the ModemMeans class above, except that it uses the Magic
Internet Kit’s custom external modem driver in place of the communicator’s built-
in modem. The MagicBusModem driver allows users to plug an external modem
into their communicator’s MagicBus port and then the application can use it with
this class.

Source Code Note: The MagicBusModemMeans class is defined and implemented
in Means:MagicBusModemMeans.(Def, c)

SerialPortMeans
Class SerialPortMeans allows applications to communicate via a Magic Cap
communicator’s MagicBus port. The MagicBus port, when used for passive serial
connections, can communicate at speeds up to 38.4 Kbps. This class inherits from
Means and ConnectableMeans, and it defines its own attribute BaudRate for the
speed of the connection. A typical instance of SerialPortMeans looks like the
following:

Source Code Note: The SerialPortMeans class is defined and implemented in
Means:SerialPortMeans.(Def, c)

TCP/IP communications
TCP/IP is the standard protocol of the Internet. Internet Protocol (IP) is a packet-
based protocol that is implemented over various types of data links, for example
Ethernet, and is the low-level heart of the Internet. Transmission Control Protocol
(TCP) runs on top of IP and provides applications with a reliable stream interface
for communications. Many applications use stream-based services, such as the
World Wide Web, by means of TCP/IP. The Magic Internet Kit also supports User
Datagram Protocol (UDP), and this will be discussed in the TCP/IP
Communications in Depth chapter of this document.

Instance SerialPortMeans 452;
baudRate: 38400;

End Instance;

Connecting to the World

General Magic Magic Internet Kit 19

The Magic Internet Kit provides three classes for communicating via TCP:
DialupPPPMeans, MagicBusPPPMeans, and XircomMeans. Each of these classes
will be discussed briefly, and for more information see the Reference section of this
guide.

DialupPPPMeans
Class DialupPPPMeans is used to create TCP/IP connections using Point-to-Point
Protocol (PPP) over the Magic Cap communicator’s built-in modem. This is the
most common way to connect a communicator to the Internet, and for good reason:
it provides a reliable, error-correcting, and authenticating stream over built-in
hardware. Additionally, most all Internet Service Providers support PPP, so any
application using it will have excellent connectivity with existing dial-up servers.

DialupPPPMeans inherits from DialupIPMeans, ConnectableMeans, and
UsesTCP. DialupIPMeans is a built-in Magic Cap class that contains fields for
useful information, namely the remote phone number, host name, and TCP port.
ConnectableMeans, as described above, adds on the single-API interface for creating
a destroying connections. The UsesTCP class is provided in MIK to do the hardware
independent work of managing data link servers and TCP streams. UsesTCP will be
described later in the Behind the scenes with TCP/IP section.

Instances of TCP-based Means objects contain a bit more information than the
serial-based Means objects that were shown above. You’ll notice that some parts are
the same as for ModemMeans, namely the Telenumber and Text object. There are
a few additional classes, though: a FixedList and Monitor. These will be discussed in
greater detail as part of the UsesTCP mixin class. Here’s a sample instance of
DialupPPPMeans and its supporting classes:

Instance DialupPPPMeans 502;
reservationTime: 0;

 telephoneNumber: (Telenumber 503);
 hostName: (Text 505);
 port: 7;

 linkAccess: (Monitor 508);
 linkClass: PPPLinkServer_;

 meansSourceIP: 0;
 dNSServers: (FixedList 509);
 login: (Text 506);
 password: (Text 507);
End Instance;

Instance Telenumber 503;
 country: 1;
 extension: nilObject;
 telephone: (Text 504);
End Instance;

Instance Text 504;
 text: '(800) 555-1212';

End Instance;

Instance Text 505;
text: 'www.genmagic.com';

End Instance;

Instance Text 506;
text: 'none';

End Instance;

Connecting to the World

20 Magic Internet Kit General Magic

An example use of DialupPPPMeans, besides the obvious one of connecting to the
Web or other Internet services, would be to take advantage of its error correction and
multiple stream facilities for a vertical market application. Say that a salesperson is
in the field with a Magic Cap communicator, and they need to synchronize records
with the main office. A TCP/IP solution with PPP would be perfect because of the
reliable connection that these protocols offer. Additionally, since TCP/IP/PPP is a
totally cross-platform standard, one could write client applications for any other
platform and still talk to the same server.

Source Code Note: The DialupPPPMeans class is defined and implemented in
Means:DialupPPPMeans.(Def, c)

MagicBusPPPMeans
Like the serial-based MagicBusModemMeans above, MagicBusPPPMeans is just an
extension of a modem-based class that uses an external modem instead of a
communicator’s built-in modem. MagicBusPPPMeans inherits from
DialupPPPMeans and mostly makes sure that modem-specific method calls are
pointed at MIK’s iMagicBusModem indexical instead of Magic Cap’s iModem.
This is accomplished by overriding the Stream attribute that is inherited from the
Means superclass. The Stream attribute specifies the hardware driver to use for
communications.

Source Code Note: The MagicBusPPPMeans class is defined and implemented in
Means:MagicBusPPPMeans.(Def, c)

XircomMeans
This class is designed for use with MIK’s special driver for Xircom Netwave wireless
ethernet cards. This driver is not yet heavily tested, so developers using it are
currently warned to take note that they are doing so at their own risk. This driver
will hopefully be polished and production-quality in the near future.

Instance Text 507;
text: 'none';

End Instance;

Instance Monitor 508;
 next: nilObject;
 count: 1;
 user: nilObject;
End Instance;

/* List of DNS servers */
Instance FixedList 509;

 length: 1;
 entry: 0x12345678;

End Instance;

Connecting to the World

General Magic Magic Internet Kit 21

WARNING! The XircomMeans class is currently unsupported. Also, do not use Xircom
Netwave PC Cards in Sony Magic Link PIC-1000 devices; the card’s
power requirements greatly exceeds what the PIC-1000 will support.

XircomMeans, like DialupPPPMeans, inherits from DialupIPMeans,
ConnectableMeans, and UsesTCP. The DialupIPMeans inheritance is not totally
appropriate since this is not a dial-up connection, but the fields for the remote host
name and port are required by the TCP/IP libraries. The Telenumber attribute is
ignored and should be set to nilObject.

Source Code Note: The XircomMeans class is defined and implemented in
Means:XircomMeans.(Def, c)

Behind the scenes with TCP/IP
In order to minimize code duplication, the above hardware-specific TCP/IP Means
classes only do “real work” that is specific to the hardware they support. If that’s the
case, then who’s doing all the rest of the work? This section will describe the key class
that lies between the high-level Means classes and the low-level TCP/IP stack:
UsesTCP.

UsesTCP is the mixin class that all of the above TCP/IP Means classes inherit from
to do the gnarly work of managing TCP/IP streams and data link servers. UsesTCP
knows how to automagically connect and disconnect the link servers when needed,
resolve host names with DNS when they are specified symbolically, and other fun
stuff. We’ll take a look at the features of UsesTCP, and you can find complete
documentation on its implementation in the TCP/IP Communications in Depth
chapter.

First of all, TCP/IP has the neat capability of creating multiple communications
streams over the same data link. This would usually present a bit of a problem,
though, when it comes to connecting and disconnecting streams because the code
would have to figure out when it needs to create or destroy the link server. UsesTCP
does this automatically by keeping count of the number of streams that a given link
server has running on it. Client code, therefore, does not have to worry about
managing the data link.

Second, the names of IP destinations can be specified by either an IP address, e.g.
192.216.22.142, or symbolic host name, e.g. www.genmagic.com. UsesTCP will
look at the HostName attribute of the Means object, and if the name is not an IP
address, it will ask the DNS servers in the DNSServers attribute if they can turn the
name into an IP address.

A third feature of UsesTCP is its flexibility. UsesTCP provides methods that
subclasses can override to do custom initialization of the data link server and do any
negotiation with the remote host before the link level protocol is activated.
Additionally, client code can manually open and close the data link level without

Connecting to the World

22 Magic Internet Kit General Magic

creating a TCP/IP stream at the same time. This is useful if the client code wants to
create and destroy several streams, one after another, without opening and closing
the data link each time.

For more information on UsesTCP, see the TCP/IP Communications in Depth
chapter and the Reference section of this document.

Source Code Note: The UsesTCP class is defined and implemented in
Means:UsesTCP.(Def, c)

Example: Finger Client
Enough talk, let’s rock! In this section we will build a TCP/IP application from the
ground up using the Magic Internet Kit. The application will be a finger client that
asks a remote host about the status of a user on that host. For more information on
the finger protocol, see RFC 742. We’ll build this application in a step-by-step
fashion, so boot your computer and follow along!

Step 1: Create the code base
The data that we will exchange with the server is very basic: we send a user name and
the server sends back information on that user and closes the stream. For our client,
there will be one text field for the user name, and another field for the server’s reply.
We’ll also need to provide a basic user interface for setting up the information on our
host. Given these requirements, the EmptyWithFrills template sounds like a great
starting place, so let’s open up New Comms App and create our new application base.

Select TCP/IP as your connection type, and then add whatever hardware support
you desire. Also include DNS if you want name resolution capabilities. I’ll name my
new application “Finger.” Now build the new application for the Macintosh
simulator.

Step 2: Build the user interface
The EmptyWithFrills template provided us with a new door in Magic Cap’s
hallway. Behind that door is a scene with one button in it that takes the user to its
connection setup scene. Now add the following components to this scene:

• TextField object for the user name

• TextField object for the server’s reply

• Button object to do the work

Connecting to the World

General Magic Magic Internet Kit 23

For my version of Finger, the user interface looks like this:

Figure 5 Finger user interface

When you have the interface the way that you like it, use Magic Cap’s Inspector tool
to select Finger’s Scene. Then select Examine Dump Inspector Target Deep from the
simulator’s menu to dump the interface components in this scene. If you hold down
the shift key while doing this last step, the objects will be dumped to the Macintosh
clipboard, too, which will make the next step easier.

Note: We are not using Magic Cap’s “Dump Package” feature since Dump Package
would dump a lot more stuff than we need. For example, all of the setup components
would get dumped, and these are most easily kept in separate files like the template
starts with. Dump Package won’t handle the multiple object instance files properly.

With these objects dumped out, go back to MPW and paste them into your
Objects.Def file as you would with any other Magic Cap application.

Connecting to the World

24 Magic Internet Kit General Magic

Step 3: Define the FingerButton class
Let’s make the “Do it” button that we added above do the real work. First, subclass
Button and override its Action method. A few fields for the two TextField objects
would be handy, too, so add those. Here’s the class definition that I’ll use for this
new class, called FingerButton:

With the new FingerButton class defined, modify your Objects.Def file to reflect the
new class. Here’s an excerpt from my Objects.Def file:

If you like, you can also remove the “Port” setup TextFields from the object instance
files related to the Means classes, e.g. DialupPPPObjects.Def. The files are, by
default, in a folder called “MIKObjects” within your project’s folder. We won’t need
for the user to set up the remote port number since we know that port 79 is the finger
port on Unix machines.

Define Class FingerButton;
 inherits from Button;

 field queryText: Object, getter, setter;
 field replyText: Object, getter, setter;

 attribute QueryText: Object;
 attribute ReplyText: Object;

 overrides Action;
End Class;

Instance FingerButton 'Do it!' 9;
 next: (TextField 'Server reply:' 10);
 previous: (SimpleActionButton 'Set up host info' 17);
 superview: (Scene 'Finger' 6);
 subview: nilObject;
 relativeOrigin: <66.5,-43.0>;
 contentSize: <50.0,24.0>;
 viewFlags: 0x70101200;
 labelStyle: iBook12Bold;
 color: 0xFF000000;
 altColor: 0xFF000000;
 shadow: nilObject;
 sound: iTouchSound;
 image: nilObject;
 border: iSquareButtonBorderUp;
 queryText: (TextField 'User to finger:' 2);
 replyText: (TextField 'Server reply:' 10);
End Instance;

Connecting to the World

General Magic Magic Internet Kit 25

Step 4: Write the code!
Now it’s time to write the code for FingerButton’s Action method. Here’s the code
as one block. We’ll discuss it in a step-by-step fashion afterwards.

Method void
FingerButton_Action(ObjectID self)
{
 ObjectID means = DirectID(iiMeans);
 ObjectID replyText = ReplyText(self);
 ObjectID queryText = QueryText(self);
 ObjectID stream;
 ObjectID exception;
 Unsigned count;
 Boolean done;
 Str255 replyString;
 Str255 queryString;

 /* Clear the reply TextField */
 DeleteText(replyText);

 /*
 ** Make sure the Means object is TCP-capable! iiMeans refers to
 ** the current Means object that the user set up in the "Finger
 ** Setup" scene included with the template that we used
 ** (EmptyWithFrills). See ConnectChoiceBox and HardwareChoiceBox's
 ** SetLevel methods for the implementation of this.
 */
 Assert(Implements(means, UsesTCP_));

 /* Set the port to 79 (the finger port) */
 SetPort(means, 79);

 /* If we fail the first sanity-check, return immediately. */
 if (!CanCreateConnection(means))
 {
 Honk();
 ReplaceTextWithLiteral(replyText, "Ack! Can't connect!");
 return;
 }

 /* Catch all connect-time exceptions. */
 if ((exception = CatchByClass(ConnectException_)) != nilObject)
 {
 /* An error occured while connecting! We'll just return. */
 Honk();
 ReplaceTextWithLiteral(replyText,
 "Ack! An error occured while trying to connect!");

 /* Destroy the exception object now that we're done with it. */
 Destroy(exception);

 return;
 }

 /* Connect to the remote host! */
 stream = CreateConnection(iiMeans);

 /* Commit the above exception handler */
 Commit();

Connecting to the World

26 Magic Internet Kit General Magic

Step 4.1: Getting ready to take-off

The first step is a bit of pre-flight checking, namely checking that the Means object
that the user selected in the “Finger Setup” scene implements UsesTCP. Of course,
when we created the application, we only specified TCP means objects like
DialupPPPMeans as ones we wanted to use, so this should never happen. We’ll also
manually set the remote port to 79, which is the finger port as specified in RFC 742.

Once that’s done, we’ll call our sanity-check method CanCreateConnection to see
if we can possibly connect. If not, we’ll return immediately.

 /* Send the query to the remote host */
 TextToString(queryText, queryString);

 if (Catch(serverAborted) != nilObject)
 {
 /* An error occured while writing! */
 Honk();
 ReplaceTextWithLiteral(replyText,
 "Ack! An error occured while trying to write!");
 return;
 }

 Write(stream, &queryString[1], queryString[0]);
 Write(stream, "\xD""\xA", 2);
 Commit();

 /* Read in the reply */
 done = false;
 while (!done)
 {
 char* currentChar;

 /* Read up to 255 characters at a time */
 count = Read(stream, replyString, 255);
 replyString[count] = 0x0; /* Null-terminate the string */

 /* Turn those pesty carriage returns into spaces */
 currentChar = replyString;
 while (currentChar[0])
 {
 if (currentChar[0] == 0xd)
 currentChar[0] = 0x20;
 currentChar++;
 }

 /* Stick the data into the "server reply" TextField */
 AppendLiteral(replyText, replyString);

 if (count < 255)
 done = true;
 }

 /* Destroy the connection now that we're done. */
 DestroyConnection(means, stream);
}

Assert(Implements(means, UsesTCP));
SetPort(means, 79);

if (!CanCreateConnection(means))
 return;

Connecting to the World

General Magic Magic Internet Kit 27

Step 4.2: Set up the error handling code

Before we try to do the real work of establishing a connection, we must set up the
exception handler. We’ll catch all ConnectException objects and just return from
our method. A real application would want to check the ConnectError attribute of
the exception object to see exactly what kind of exception was thrown.

Step 4.3: Take off!

The CreateConnection method should do just that: create a live connection to the
remote host. If this method fails, it will throw a ConnectException and wind up in
our above exception handler. If not, the code will just go on. At this point we’ll want
to commit the connect-time exception handler since the connection worked.

Step 4.4: Send the query

Now it’s time to send our query to the remote host. Before we actually call
TCPStream’s Write method, though, we should set up error handling code. In this
case, we want to catch serverAborted exceptions. If the Write method fails, for
example if the remote server closes the stream before all the bytes are written, then
Write will throw a serverAborted exception. If we don’t tell Magic Cap that we can
handle this type of error, the uncaught exception will cause the communicator to
reset. That would be bad.

With our error handling code in place, we can try to stuff some bytes down the TCP
stream. The first Write call sends the user name to the server, and the second Write
sends a carriage return/linefeed combo that terminates the query. After this is done,
we can Commit the above exception handler since we are done with the code that
could fail.

if ((exception = CatchByClass(ConnectException_)) != nilObject)
{
 Honk();
 Destroy(exception);
 return;
}

stream = CreateConnection(means);
Commit();

if (Catch(serverAborted) != nilObject)
{
 /* An error occured while writing! */
 Honk();
 ReplaceTextWithLiteral(replyText,
 "Ack! An error occured while trying to write!");
 return;
}

Write(stream, &queryString[1], queryString[0]);
Write(stream, "\xD""\xA", 2);

Commit();

Connecting to the World

28 Magic Internet Kit General Magic

Step 4.5: Read the response

At this point, the server should be spitting data back at us. We’ll read this in 255 byte
chunks and stick it in the “Server Reply” text field. The TCPStream_Read method
will block until the request can be satisfied, unless the stream gets closed under it, so
we can use that to our advantage here. In the case of finger, the server will close the
stream immediately after sending its data, so at that point our Read call will return
with however many bytes it could get.

Step 4.6: Close the stream

Now that we’re done with the stream, we can get rid of it. The underlying TCP code
will have already disconnected the TCP stream for us since the remote host
disconnected earlier after sending its data, but we still need to let the
ConnectableMeans object know that we’re done. In this case, the means object will
disconnect the data link server that the TCP stream was using, and also destroy the
TCPStream object.

Step 5: Rebuild and play with your new application
Now rebuild your copy of Finger and see if it works! If it doesn’t, you can double-
check it with the copy of Finger that accompanies the Magic Internet Kit in the
documentation folder.

Step 6: Complain about Finger stopping user interaction
Finger still leaves a bit to be desired. For example, you’ll notice that Magic Cap will
stop the user from doing anything while the FingerButton_Action method is
running. This is because the code is all executing on the User Actor, which is the
thread that all user interaction runs on. A better solution would have this code
executing on its own thread so that the user can go do other stuff while Finger runs.
That’s what we’ll do next.

Multithreading with Actors
Magic Cap is a multi-threading platform, and threads are very handy for
communications. As you’ve seen above with Finger, blocking all user interaction
while dialing the phone or waiting for a remote server is, at best, very annoying for
the user. Instead of executing time consuming code on the thread that handles user
interaction, applications should create their own threads for these tasks.

In Magic Cap, a thread is called an Actor. Applications wishing to create their own
actors must subclass the Actor class and override its Main method to make it do what
they want. This section will briefly cover how to use actors, but Magic Cap Concepts
provides a far more complete discussion of this topic. We recommend that you read
that chapter as soon as you have time.

count = Read(stream, replyString, 255);
(...)
AppendLiteral(replyText, replyString);

DestroyConnection(means, stream);

Connecting to the World

General Magic Magic Internet Kit 29

Actor concepts
Like everything in Magic Cap, an actor is an object. The base Actor class does not
really do anything when you create it, but rather it is meant to be subclassed. The
first method that you should override is Main. Main is the heart of the actor; when
the actor is created, Main is executed. When Main returns, the actor is destroyed.

Magic Cap uses cooperative multitasking with its actors, so each actor should be sure
to give up time to other actors. This is done by calling RunNext on the scheduler,
referenced by the iScheduler indexical. Calling RunNext tells the scheduler to run
the next waiting actor.

Some methods that you might call will automatically call RunNext if they are going
to take a while to return. For example, if you call Read on a TCPStream object, and
the Read cannot be immediately satisfied because all the bytes are not available, Read
will call RunNext to let other actors do their stuff.

Creating an actor
Actors are created using the NewTransient method. Here’s an example:

This code will create a new CommsActor class. The second nil parameter is for
parameters that one might want to pass for the new actor, and passing nil tells Magic
Cap to use the default parameters. If you want to pass in parameters, for example the
size of the execution stack that the actor should have, you can do so just like for any
other object. Here’s an example of setting the stack size a bit larger than the default:

Once the actor is created, it will be ready to run in the scheduler. Keep in mind that
the code in your actor’s Main method will not start executing until the scheduler
switches to the actor. This will happen the next time that you, or the system, calls
RunNext.

newActor = NewTransient(CommsActor_, nil);

NewActorParameters newActorParams;

ZeroMem(&newActorParams, sizeof(NewActorParameters));
SetUpParameters(&newActorParams.header, newActorObjects);

newActorParams.stackSize = 0x2000; /* default is 0x1000 (4K) */

newActor = NewTransient(CommsActor_, &newActorParams.header);

Connecting to the World

30 Magic Internet Kit General Magic

Using an actor
As mentioned above, all the real work of an actor is performed in the Main method.
Here’s a sample main method:

There is one essential caveat to using actors that you should be aware of: code
running on an actor that isn’t the user actor cannot call methods that deal with
drawing on the screen. This means that code in the above MyActor_Main method
cannot move viewables on the screen, call RedrawNow, or otherwise change stuff on
screen. If you need to mess with viewables, do so using RunSoon. RunSoon will be
discussed shortly in the Moving between actors section.

Note: There is one exception to the rule of not messing with stuff on screen from
outside the User Actor: announcements. You can always call the Announce method
regardless of the current actor since it will automatically use RunSoon when needed

There is one more interesting caveat to using actors in Magic Cap: an actor is a
transient object, so in Magic Cap 1.0 a power cycle would destroy the actor. This is
not always that case in Magic Cap 1.5, so special care must be taken to ensure that
the state of an actor does not get confused if the power is turned off and then back
on. This is particularly important with communications, of course, because any data
links will get shut down when the power is turned off.

The key to managing transient actors in Magic Cap 1.5 is overriding the Reset
method of an object. Reset gets called when the device is powered on, so you can use
this method to hunt down any actors that need to be managed and do whatever is
appropriate. For communications this usually means destroying the actor.

Source Code Note: Two of MIK’s template packages illustrate how to override reset
and destroy remaining actors at power-up time. See the CommsManager class in the
Terminal and EmptyWithFrills templates.

Destroying an actor
Code can destroy an actor using Magic Cap’s Destroy method. If the code wanting
to kill the actor is running on the actor in question, though, it should instead force
the actor’s Main method to return.

Method void
MyActor_Main(ObjectID self, Parameters* UNUSED(params))
{
 while (FeelingPeachy(self))
 {
 DoSomeStuff(self);

 if (SomeFatalErrorOccurred(self))
 {
 return;
 }
 }
}

Connecting to the World

General Magic Magic Internet Kit 31

Moving between actors
Magic Cap provides mechanisms for code executing on one actor to talk to other
actors, so we’ll briefly cover those mechanisms here. There are a few different ways
to manage multiple threads, including semaphores, cross-actor exception throwing,
and the RunSoon method mentioned above. For more information on these topics,
see the Magic Cap Concepts chapter on actors.

Semaphores
A Semaphore object is very handy for controlling access to a resource. Magic Cap’s
semaphores are quite a bit more intelligent than the typical semaphore in operating
system theory, in fact they behave almost like monitors. Semaphores provide
automatic queueing and dequeueing as needed to control access to a single resource
from multiple threads, so there is no need to poll a semaphore.

There are two key methods in the Semaphore class that you should be aware of:
Access and Release. Access is used to “hold down” the semaphore. If the semaphore
being accessed is not already held down by code on another actor, Access will return
immediately. If the semaphore is already accessed, though, Access will block until
someone else releases the semaphore using Release. Release will tell the semaphore
that you’re done messing with it, and it will then wake up the next actor in the
queue, if any, that wanted to access the semaphore.

Cross-actor exceptions
If you’re not already familiar with exception handling in Magic Cap, you should read
the “Handling Exceptions” chapter of Magic Cap Concepts for a good introduction.
This section briefly describes how to use exceptions with actors.

Every actor has its own exception stack, so an exception thrown on one actor using
Fail cannot be caught from another actor. This is very useful for localizing exception
handling code; for example a serverAborted exception thrown on a communicating
application’s comms actor won’t be caught accidentally by the Post Office actor in
the system.

If code executing on one actor wants to throw an exception on a different actor, it
should use the FailSoon method. FailSoon will cause a specified exception to get
thrown on the other actor the next time that the actor comes up in the scheduler. If
the target actor is not ready to run, e.g. it is blocked, the actor will be awakened and
the exception thrown.

Source Code Note: See CommsManager_DestroyCommsActor in the CujoTerm
template for an example of using FailSoon.

RunSoon
The RunSoon method lets code in one actor specify a completion function that is to
be run on the User Actor. When Magic Cap’s scheduler switches to the User Actor,
this function will be executed. For example, if you are creating Card objects from

Connecting to the World

32 Magic Internet Kit General Magic

data that is being pulled in by a communications stream, you can only perform some
of the Card class’s methods from the User Actor, e.g. Borrow/ReturnForm. The best
way to do this, then, would be to read the data in from one actor and then call
RunSoon to perform the final card creation from the User Actor.

Usage of this method is most easily explained with an example:

Step 1: Define the parameters for the RunSoon completion function

RunSoon completion functions can take a parameter block structure like the one
used here. The first item in this structure is a Parameters header. This is used for
type checking, so you don’t have to fill anything in for it. After the header, you can
stick anything you want in the structure. Keep in mind the number of ObjectIDs
that you use, since you’ll need this later. A handy trick is to define a symbol for the
number of ObjectIDs as shown above.

typedef struct
{
 Parameters header;
 ObjectID interestingThing;
} DoSomethingUsefulParams;
#define numObjectsDoSomethingUsefulParams 1

Private void
DoSomethingUseful(DoSomethingUsefulParams *params)
{
 ObjectID thing = params->interestingThing;
 DestroyTransientBuffer(params);

 DoSomethingElse(thing);
}

Method void
Thing_DoSomethingElse(ObjectID self)
{
 // stuff...
}

#undef CURRENTCLASS
#define CURRENTCLASS MyActor

Method void
MyActor_Main(ObjectID self, Parameters* UNUSED(params))
{
 DoSomethingUsefulParams* params;
 // other stuff...

 params = NewTransientBuffer(sizeof(*params));
 SetUpParameters(¶ms->header, numObjectsDoSomethingUsefulParams);
 params->interestingThing = ThingObject(self);

 RunSoon(true, (CompletionFunction) DoSomethingUseful, ¶ms->header);
 // other stuff...
}

typedef struct
{
 Parameters header;
 ObjectID interestingThing;
} DoSomethingUsefulParams;
#define numObjectsDoSomethingUsefulParams 1

Connecting to the World

General Magic Magic Internet Kit 33

Step 2: Write the completion function

Completion functions for RunSoon calls are typically very short and merely call
another method of the class in question for doing the “real work.” When a
completion function is executed, the current context may not be the on that you
expect, e.g. your own package. This is usually not what you want, but calling a
method of one of your objects will ensure that Magic Cap switches into your
package’s context.

Step 3: Write the methods that do the real work

As mentioned in the previous step, do the “real work” of a RunSoon in a method of
one of your package classes and not the completion function.

Step 4: Call RunSoon from another actor!

Now that your completion function is all set up, you can now call RunSoon from
any actor that you want, and the completion function will execute on the User Actor.

Actors in the Magic Internet Kit
If all of this multithreading stuff looks intimidating, don’t fret; the Magic Internet
Kit comes to the rescue again. MIK includes actors in two of its templates, Terminal
and EmptyWithFrills. In Terminal, all connecting and reading is performed on the
CommsActor object. Additionally, there is a CommsManager class that is used to

Private void
DoSomethingUseful(DoSomethingUsefulParams *params)
{
 ObjectID thing = params->interestingThing;
 DestroyTransientBuffer(params);
 DoSomethingElse(thing);
}

Method void
Thing_DoSomethingElse(ObjectID self)
{
 // stuff...
}

Method void
MyActor_Main(ObjectID self, Parameters* UNUSED(params))
{
 DoSomethingUsefulParams* params;

 params = NewTransientBuffer(sizeof(*params));
 SetUpParameters(¶ms->header,
 numObjectsDoSomethingUsefulParams);
 params->interestingThing = ThingObject(self);

 RunSoon(true, (CompletionFunction) DoSomethingUseful,
 ¶ms->header);
}

Connecting to the World

34 Magic Internet Kit General Magic

create and destroy CommsActor objects. The EmptyWithFrills template provides
these same classes, except the terminal-specific code is removed and a “your code
goes here” comment is in its place.

Source Code Note: See the CommsActor.(Def,c) and CommsManager.(Def,c) files
in the CujoTerm and EmptyWithFrills templates for their uses of Actors.

General Magic Magic Internet Kit 35

Serial Communications in Depth

Serial communications, for the purposes of the Magic Internet Kit, will be defined
as using a raw data stream without intervening protocols like PPP. For example,
using the modem to directly dial to a bulletin board system (BBS) or using the
MagicBus port as a serial port counts as serial communications.

This chapter of the MIK Programmer’s Guide will discuss the lower-level APIs that
are built into Magic Cap for these types of serial communications. These APIs are
below the level of the Magic Internet Kit framework, but the information presented
here is valuable regardless of what level of APIs your application is using.

Using ConnectableMeans vs. low-level APIs
The first issue to discuss is which level of programming interfaces that your
application should use. The low-level communications code in the system is what
developers formerly had to use, but the Magic Internet Kit provides a higher level of
abstraction that lets the developer program with one easy-to-use API and let the MIK
framework worry about the messy and means-specific details.

In general, programming to the MIK framework is preferable to writing code directly
for the low-level APIs. The Magic Internet Kit was designed to be both lightweight
and modular, so your application only has to use the parts that it wants. In this case,
selecting only serial communications support when creating your application will
ensure that only the serial support classes are included, so there will be minimal
overhead even though you get the fancy MIK interfaces.

The Serial and TCP/IP In Depth chapters are included with the Magic Internet Kit
documentation since they may lend insight into the design choices made in the
implementation of the MIK framework. Additionally, if you’re trying to debug a

Serial Communications in Depth

36 Magic Internet Kit General Magic

comms problem, the information presented here can be extremely valuable. For
these reasons, you should read these chapters even if you are using the high-level
MIK framework.

Note: Pay special attention to the Detecting Loss of Carrier section; this information
is very useful for all applications that use the modem.

Introducing the SerialServer and Modem classes
There are two key classes that you should know about for low-level serial
communications: SerialServer and Modem. Both of these classes are used for
accessing a communicator’s built-in modem, and the SerialServer is used by itself for
accessing the MagicBus port as a serial port.

The SerialServer is the lowest-level class that is used for serial communications, and
this provides essential methods like Read, Write, OpenPort, and ClosePort. There
are two serial servers in Magic Cap, referenced by the iSerialAServer and
iSerialBServer indexicals, for the modem and MagicBus ports, respectively. You will
rarely use iSerialAServer directly, but instead use the iModem indexical to access the
modem-specific APIs.

The Modem class provides more functionality than the core serial server that is
specific to using a Magic Cap communicator’s built-in modem. For example,
Modem’s Connect and Disconnect methods will do special stuff like dialing a
phone number and ensuring proper configuration of the modem. Essentially, the
Modem class sits on top of the SerialServer class and worries about most of the lowest
level details for you.

Using the modem
Using Magic Cap’s modem without the aid of the high-level MIK framework is
pretty easy; there isn’t that much to be done, but you still have to make sure that you
do it right. We’ll first discuss basic modem usage, such as connecting and
disconnecting, and then discuss related topics like detecting loss of carrier.

Connecting the modem
This part looks pretty complex, but in reality connecting the modem is a one-line
operation with lots of error handling code around it. Connect time errors are all
handled by means of exceptions, so if you are not familiar with exception handling
you should read the “Handling Exceptions” chapter of Magic Cap Concepts before
proceeding.

Step 1: See if there’s a chance at connecting (preflighting)

The first step in trying to connect is to make sure that there’s a chance that the
connection could succeed. There are a few situations to check for that might
immediately cause failure, so it’s best to check for them before doing anything else.

Serial Communications in Depth

General Magic Magic Internet Kit 37

First, check to see if the user has already set up a dialing location. If this is not set up,
the Modem’s Connect method will surely fail since it tries to be smart about
prepending area codes and/or long-distance access numbers. This is the code that
you should use to check for this case:

Second, check to make sure that the phone line is plugged in. Modem’s CanConnect
method will determine if this is the case:

Third, check to make sure that someone else is not already using the modem:

Note that these checks do not guarantee that the above situations could not arise
between checking here and trying to connect later. That’s why we still need to put
full-strength error handling on the connection itself. The above checks should still
be made to make sure that we can detect obvious error cases before trying an all-out
connect.

Source Code Note: Examples of using these “preflight checks” can be found in each
of MIK’s ConnectableMeans subclasses as part of the CanCreateConnection
methods.

Step 2: Set up a TransferTicket object

The Modem class’s Connect method expects a TransferTicket object as its second
parameter, so we need to create one. The Means attribute of this object is the only
one that we need to worry about, so don’t be worried about the zillions of other
fields. We’ll create our ticket on the fly in our code, but as an alternative you could
define one in your package’s object instance file.

Step 3: Set up the exception handlers

There are two main exceptions that you should expect to catch if anything goes
wrong with connecting the modem: cannotOpenPort and commHardwareError.
The first exception will be thrown if the modem port cannot be opened for some

if (!SetupDialingLocation(iSystem)) /* fail! */

if (!CanConnect(iModem)) /* fail! */

if (InUse(iModem)) /* fail! */

ObjectID phoneNumber = NewTransient(Text_, nil);
ObjectID telenumber = NewTransient(Telenumber_, nil);
ObjectID means = NewTransient(TelephoneMeans_, nil);
ObjectID ticket = NewTransient(TransferTicket_, nil);

ReplaceTextWithLiteral(phoneNumber, "(800) 555-1212");
SetTelephone(telenumber, phoneNumber);
SetTelenumber(means, telenumber);
SetMeans(ticket, means);

Serial Communications in Depth

38 Magic Internet Kit General Magic

reason. The second exception will be thrown if something bad happens during or
immediately after the connection process, for example if the remote modem does not
answer the call. Here’s the code that you need for catching these exceptions:

Step 4: Try to connect!

Now that all the error handling code is in place, it’s time to try connecting. Modem’s
Connect method is the method that we want to use.

Note: Don’t use the Modem class’s ConnectToNumber or DialNumber methods.
These methods are for system use only as the setup required before calling them is
hardware dependent.

Step 5: Commit the exception handlers and clean up

If the connection attempt did not fail up to the exception handlers, then the
connection attempt succeeded. At this point the exceptions handlers should be
committed. The transfer ticket and its associated objects could also be destroyed as
well unless you intend to use them again later.

Using a live modem connection
Once the modem is connected, using it is pretty straightforward. The API is that of
Magic Cap’s Stream mixin class; Read is used for reading, Write is used for writing,
and CountReadPending returns the number of bytes that are available for reading.
One important note is that these methods are all synchronous, i.e. they block until
they are completed. This blocking is not a big deal for writing to the modem since
writing is usually a fast operation that does not have to wait for the other end. For
reading, though, the issue is more important. If the remote server takes its time in
sending you the data that you are expecting, then you either have to poll

if (Catch(commHardwareError) != nilObject)
{
 /*
 ** If we are here, a commHardwareError exception got thrown.
 */
 return false; /* do what's appropriate here */
}
if (Catch(cannotOpenPort) != nilObject)
{
 /*
 ** If we are here, a cannotOpenPort exception got thrown. Note
 ** that the commHardwareError above did _not_ get thrown, so
 ** we need to do one Commit() to take it off the exception
 ** stack and commit its changes.
 */
 Commit();
 return false; /* do what's appropriate here */
}

Connect(iModem, ticket);

Commit(); /* cannotOpenPort */
Commit(); /* commHardwareError */

Destroy(ticket); /* if you want to */

Serial Communications in Depth

General Magic Magic Internet Kit 39

CountReadPending to avoid blocking the User Actor or run your code on its own
thread. For more information on using your own thread, see the Multithreading
with Actors section of this document.

If any of the stream methods cannot complete their task, they will return with
whatever they could get done. If the method failed to complete due to a loss of
carrier, for example the other end hanging up, then your code will have to detect this
separately. See the later section on Detecting Loss of Carrier for more information.

Disconnecting the modem
Fortunately, disconnecting the modem is easier than connecting it. In typical usage,
the Modem class’s Disconnect method does the right thing. There is one interesting
caveat here: if your code is blocked on a Read call, Disconnect will not return until
the Read is completed. If you don’t want to wait for the Read to return, or you know
that the Read will never return, then disconnecting the modem is a tad more
complex.

To disconnect the modem when other code is blocked on it, you have to abort the
serial server to release the semaphores being held down by the outstanding reads or
writes. Here’s how to do that and then disconnect the modem:

The first step is to abort the serial server, which you will note is found in the Target
attribute of the modem, iModem. This will call ReleaseAndFail with a serverAborted
exception on any semaphores that may be held down in the serial server, so the code
should plan ahead and catch serverAborted exceptions. After that, closing and
opening the serial server should get things in a reasonable state for calling Disconnect
on the modem itself.

Note: The Abort method of the Modem class was designed to work in the case of
blocked readers, but it doesn’t. Unfortunately, code like the above must be used to
get the modem unstuck.

Detecting Loss of Carrier
One fun aspect of communications is that anything can go wrong at any time. For
example, the user can pull out the phone cord and mess up your modem connection
or the remote modem could hang up the line. Your application should be prepared
to deal with these situations by telling the modem that you want notification of a
change in the carrier.

ObjectID serialServer = Target(iModem);

if (Catch(serverAborted) == nilObject)
{
 Abort(serialServer);
 Commit();
}

ClosePort(serialServer);
OpenPort(serialServer);
Disconnect(iModem);

Serial Communications in Depth

40 Magic Internet Kit General Magic

To tell the modem that you want to monitor the carrier, call MonitorDCD on the
modem object with the second parameter set to the object that you want notified.
The third parameter should be true to tell the modem to start notifying your target
object of carrier changes.

Notification of carrier changes is provided via the callback CarrierChanged. The
second parameter passed to this method by the modem, hasCarrier, tells your code
if this change is a gain or loss of carrier. A typical CarrierChanged method might
look like the following:

If carrier is lost in the middle of your communications session, you should still call
Disconnect on the modem to get things in their proper state. Disconnecting the
modem will also reset MonitorDCD so that it does not notify any objects of carrier
changes, so be sure to set up MonitorDCD before every connection attempt.

Dispelling myths and stuff to avoid
The Modem class has been greatly misunderstood in the past, so this section
discusses things that should not be done. Generally, one should use only the
methodologies presented above for dealing with serial communications, so if in
doubt about a method not mentioned in this chapter, don’t use it.

AT commands are evil
The developer should never send AT commands directly to the modem from high
level code. This is for compatibility reasons; AT commands are proprietary and each
modem manufacturer’s command set typically differs. Application code should
never assume the type of modem that it is running on since the iModem indexical
does not always refer to a communicator’s built-in modem. Other third party
applications can replace iModem with their own modem drivers, and the modems
on the other end of the driver may not use the Rockwell command set that the
internal modem uses.

Cruel and unusual punishment with SetBitRate

Note: This section applies only to total modem geeks.

If only one thought is to cross your mind when you wake up every morning, besides
"not again," it should be "SetBitRate is evil."

This leads to an important question, namely, “huh?” HardwareStream_BitRate is a
greatly misunderstood attribute lurking in Magic Cap, so an explanation of what it
does is in order. The comments in the Server.Def class definition file say the

Method void
MyObject_CarrierChanged(ObjectID self, Boolean hasCarrier)
{
 if (!hasCarrier && MethinksIAmConnected(self))
 {
 /* I thought I was connected, but I guess I'm not anymore! */
 CleanUpAndGoHome(self);
 }
}

Serial Communications in Depth

General Magic Magic Internet Kit 41

following about HardwareStream's BitRate attribute: “Return current i/o bit rate,
lower if mismatched.” Maybe that's a tad terse. I'll say “BitRate and SetBitRate refer
to the DTE/DCE speed. Note that this is not the same as the carrier speed.” That's
even more terse. Let me start by discussing some of the lower level details about
modem communication.

First, There are two connections going on with device modems: the modem is
talking to another modem, and it's also talking to the device CPU. I'll refer to the
modem to modem speed as the carrier speed. I'll refer to the CPU to modem speed
as the DTE/DCE speed. In the RS232 standard, DTE refers to Data Terminal
Equipment, in this case the CPU, and DCE refers to Data Communications
Equipment, or the modem. If we simply called the DTE a processor and DCE a
modem, then a whole bunch of modem experts would be out of jobs since that
would be too easy.

On the 2400 Baud devices like Sony's PIC-1000 and Motorola's Envoy, the modem
and CPU do not hardware handshake, so the carrier speed and DTE/DCE speed
have to be the same to avoid loss of data. SetBitRate(2400) sets the DTE/DCE speed
to 2400 bps to make sure that the speeds are matched. Of course there's an edge case
that can mess everything up: if the phone line is really noisy, or the modem on the
other end is really slow, you might get a connection at 1200 Baud. In that case
SetBitRate(2400) would not work.

On Sony's PIC-2000, the 14.4K modem and processor have hardware handshaking
that lets them tell each other to stop sending bits for a while if one is bogged down.
This hardware handshaking makes life much easier for the system; just set the DTE/
DCE speed as high as it will go and let the handshaking prevent overflow. The only
danger is that the DTE/DCE speed must be greater than or equal to the carrier
speed, otherwise the following case could arise: the modem is connected at 14400
bps and the DTE/DCE speed is 2400. The modem can then receive data faster than
it can send the data to the CPU, so it buffers everything it can. When the modem's
receive buffer fills up, data loss occurs.

Here's the key: SetBitRate does not have anything to do with carrier (modem to
modem) speed; it only controls DTE/DCE speed. There is no easy way to force
carrier speeds in Magic Cap at the time. If you SetBitRate(2400) on a PIC-2000, it
will still try to connect at 14,400.

Here's the best solution to the above complexities and problems: use Modem’s
Connect method. Connect knows about the hardware that it's running on, so it will
handle all the device-specific details. It will handle carrier speed fallback on 2400
Baud devices, and it will make sure the DTE/DCE speed is maxed out on others.
The user may not have control over the carrier speed, but that's often a good thing.
Modems know how to talk to each other, so let them handle it. If the PIC-2000 tries
to talk to a 9600 Baud modem, it will know to fall back and connect at 9600. The
secret is to not worry about it.

Serial Communications in Depth

42 Magic Internet Kit General Magic

General Magic Magic Internet Kit 43

TCP/IP Communications in Depth

TCP/IP communications is a very broad topic, so this document will only focus on
the Magic Cap aspects of TCP/IP that are different from equivalent
implementations on other platforms. This chapter assumes that you are somewhat
familiar with the workings of TCP/IP, so if you need a more information, see
Internetworking with TCP/IP by Douglas Comer or TCP Illustrated by Richard
Stevens.

Like the previous chapter, Serial Communications in Depth, this chapter dives
below the level of the Magic Internet Kit framework and talks about the guts that
MIK takes care of for you. Regardless, this information is still important for
understanding what’s going on under the hood of the Magic Internet Kit.

Using ConnectableMeans vs. low-level APIs
As with serial communications, the first issue to discuss is which level of
programming interfaces that your application should use. The low-level
communications code in the system is what developers formerly had to use, but the
Magic Internet Kit provides a higher level of abstraction that lets the developer
program with one easy-to-use API and let the MIK framework worry about the
messy and means-specific details.

In general, programming to the MIK framework is preferable to writing code directly
for the low-level APIs. The Magic Internet Kit was designed to be both lightweight
and modular, so your application only has to use the parts that it wants. In this case,
selecting only TCP/IP communications support when creating your application will
ensure that only the proper TCP support classes are included, so there will be
minimal overhead even though you get the fancy MIK interfaces.

The Serial and TCP/IP In Depth chapters are included with the Magic Internet Kit
documentation since they may lend insight into the design choices made in the
implementation of the MIK framework. Additionally, if you’re trying to debug a

TCP/IP Communications in Depth

44 Magic Internet Kit General Magic

comms problem, the information presented here can be extremely valuable. For
these reasons, you should read the chapters that apply to your application even if you
are using the high-level MIK framework.

Note: Pay special attention to the Using a TCP stream section; this information is
very useful for all applications that use TCP streams. Additionally, the Managing
data link servers section can be useful for applications that want to manage link
servers on their own.

Link servers, protocol stacks, and streams, oh my!
TCP/IP is not a simple beast, but it can be easily mastered. There are several
protocols in action that are layered on top of each other, hence the name “protocol
stack,” and this section will briefly describe how they are related. Magic Cap’s object-
oriented systems maps these protocol layers into objects, so this section will also
discuss the objects that are responsible for implementing the functionality of each
layer.

The data link server
At the bottom of the stack is an object that knows how to talk to some type of
hardware. This hardware can be a modem, Ethernet card, or anything else that can
exchange bits. If there was a digital interface for two tin cans and a string, a link
server could be written for it.

The job of the data link server is to throw bits back and forth with a remote host. It
can be as smart or a stupid as it needs to be, but a good link server would implement
some type of error correction. This server then talks above itself to the next higher
level in the stack: IP.

Having a data link server between IP and the hardware allows IP to be generic and
run over whatever server the programmer desires. This modularity keeps IP flexible.
Examples of common data link servers are dial-up Point-to-Point Protocol (PPP)
and Ethernet.

In the Magic Internet Kit, PPPLinkServer implements the core PPP protocol and
is used by classes like DialupPPPMeans and MagicBusPPPMeans. Ethernet is
implemented in the EtherServer class and is used by the XircomEthernet driver
class and its matching XircomMeans class. Both of the link servers inherit from the
DataLinkServer class, which is the abstract class that defines the APIs that all Magic
Cap data link servers should implement.

Internet Protocol (IP)
Internet Protocol, as one might expect, is the core of the Internet. This protocol
defines the connectionless delivery service that is the foundation upon which
transport services rest, and the interface that talks to data link servers below. IP also

TCP/IP Communications in Depth

General Magic Magic Internet Kit 45

acts as a multiplexer/demultiplexer for the transport services, e.g. TCP, that sit on
top of it. IP can handle multiple transport services, so it decides which packets go to
which transport services.

In MIK, the IPSwitch and IPDaemon classes implement IP. Applications will never
talk to these classes directly; they are only used by the link servers and the transport
protocols.

Transmission Control Protocol (TCP)
Transmission Control Protocol is a protocol that sits on top of IP and provides a
mechanism for reliable, stream-based transport. IP is an unreliable service, i.e.
packets can be lost or duplicated, but TCP manages that problem and requests
packet resends and throws away duplicate packets. IP is also packet-based, whereas
TCP provides a stream-based interface similar to using direct serial communications.
For these reasons, TCP is an extremely important protocol and is the transport
service of choice for many applications.

TCPStream is the Magic Internet Kit class that implements TCP. These objects are
used by the application layer, and as such will be described in much greater detail
shortly.

User Datagram Protocol (UDP)
User Datagram Protocol is another transport service, like TCP, that talks to IP on
the bottom end and an application on the top end. UDP is packet based and
unreliable by definition, but it is useful for some types of applications. This chapter
will mostly deal with TCP, but UDP will be discussed later.

UDPPDUServer is the packet server class that MIK clients talk to, and clients must
mix in the PDUClientInterface class and implement its upcall, HandlePDU, to
receive incoming packets. Note that PDU is an acronym for Packet Datagram Unit.

Managing data link servers
Before any TCP streams can be created, a data link server must be in place and
running. I’ll use dial-up PPP as an example for the rest of this chapter, but remember
that these concepts apply to any other link server as well. With PPP, the modem
must be connected to the remote service provider before the TCP/IP elements of the
stack can be started, and the application should also disconnect the modem when it
is done. This process of managing the link server is handled automatically by the
UsesTCP mixin class in the Magic Internet Kit, but this section will discuss
methodologies for handling this if you want to do it by hand.

Source Code Note: The UsesTCP class is defined and implemented in
Means:UsesTCP.(Def, c)

TCP/IP Communications in Depth

46 Magic Internet Kit General Magic

Determining if a link server is already in place
Before starting up a link server, it is wise to check and make sure that one is not
already in place. The application could keep track of this in a state variable or
something, but there is no need to since IP has that functionality already built in.
The FindLinkByClass method of the IPSwitch class will let the application find out
if a particular class of link server is already actively hooked into IP. Here’s an example
of getting the active link server instance:

In this case, linkClass is the class number of the link that you’re looking for, e.g.
PPPLinkServer_, and linkServer will be the Object ID of the running link server. If
this class of link server is not running, the return value of FindLinkByClass will be
nilObject.

Stating a new link server

Using UsesTCP to create the link server
The Magic Internet Kit’s UsesTCP class provides a method for easily creating link
servers: CreateDataLink tells a TCP-based means object to connect its link server if
it is not already connected. This method, if successful, will return the object ID of
the resulting link server object. If this method fails, it will return nilObject.

Note: Applications creating the link server by hand might want to increment the link
server’s UseCount attribute by one if they don’t want the link to be taken down the
next time that UsesTCP_DisconnectTCPService detects that the use count is zero.

Creating the link server by hand
If you don’t want to use UsesTCP to create the link server for some reason, here’s
what is going on behind UsesTCP_CreateDataLink. This section is provided for
informational purposes; applications should just use CreateDataLink to do this.

How to start a link server depends somewhat on what type of link server it is. A
proper Magic Cap link server would inherit from the CommunicationStream class
and implement the Connect method for establishing the connection. Once the
hardware is physically connected to the remote host, and the remote host is set up to
start the type of data link server that you want, e.g. the terminal server is in PPP
mode, it’s time to create a new link server and start it up. Here’s the code:

linkServer = FindLinkByClass(iIPSwitch, linkClass);

/* Connect the hardare, assuming that it supports Connect(). */
Connect(hardware, ticket);

/* Set up paramters for new link server object. */
SetUpParameters(&linkParameters.header, newDataLinkServerObjects);
linkParameters.serialServer = hardware;

/* Create the new link server! */
linkServer = NewTransient(linkClass, &linkParameters.header);

TCP/IP Communications in Depth

General Magic Magic Internet Kit 47

Creating the link server object is quite straightforward using the NewTransient call.
After the object is created, its DataLinkSourceIP attribute should be set to an IP
address if one is to be manually assigned, otherwise set to zero and the link server
should have one dynamically assigned. The link server’s UseCount attribute should
also be set to one to keep track of the number of users. This attribute will be used
later to determine when the link server should be shut down; when disconnecting a
link user, the link user should disconnect the data link if the resulting use count is
zero.

Now that the link server object is all ready to go, the last three method calls will start
it up and connect it to IP. Note that these methods might fail, and therefore the code
above should be surrounded by exception handling code for whatever exceptions
might get thrown. For the PPPLinkServer class, a commHardwareError exception
will get thrown if PPP negotiation fails. Also keep in mind that connecting the
hardware using Connect may throw its own exceptions, so that code needs to be
shielded as well in the same way that the equivalent serial connection would. For a
more detailed example, see the UsesTCP class.

Note: Applications do not need to create the IPSwitch object manually as it will
create itself at package installation time. Don’t destroy the IPSwitch object, either!

Destroying a link server

Using UsesTCP to destroy the link server
The DestroyDataLink method of UsesTCP is in the logical inverse of
CreateDataLink. This method will check to see if the UseCount attribute of the link
server is zero, and if so, it will take down the link. There is a related method,
AbortDataLink, that will do a hard take-down of the link server. Applications
should not sure this method, though, because AbortDataLink will take the link
down regardless of users and will also ensure that the hardware is disconnected.
AbortDataLink therefore should only be used by the connection code in UsesTCP.

Destroying the link server by hand
As with creating the link server, there’s no reason that applications should have to
implement this code since DestroyDataLink does the same thing, but this
information is included for the sake of completeness.

/* If a source IP number is known, let the link server know. */
SetDataLinkSourceIP(linkServer, mySourceIP);

/* Increment the usage count of the link server. */
SetUseCount(linkServer, UseCount(linkServer)+1);

/* Fire up the link server! */
SetEnabled(linkServer, true);
StartDataLink(linkServer);
AttachLink(iIPSwitch, linkServer, DataLinkSourceIP(linkServer));

TCP/IP Communications in Depth

48 Magic Internet Kit General Magic

As usual, destroying is easier than creating. The only caveat is that the application
should check to make sure that it does not destroy a link server that is being used by
other streams within the application. This is easily handled by using the UseCount
attribute of the server to keep track of the number of users. Here’s an example of
closing down a link server:

DetachLink will tell IP that the link server is no longer active, and Destroy will both
call Disconnect on the link server’s hardware and destroy the link server object.

Creating and using TCP streams

Creating a TCP stream and initiating a connection
Once the link server and is running and connected to IP, as described in the previous
section, the application can create transport layers like TCP on top of it. This is
pretty easy to do, and it is similar to setting up any other connection: fill in the
blanks of a Means object and pass it to TCPStream’s Connect method. Here’s what
the code looks like:

The means object passed into TCPStream_Connect must inherit from
DialupIPMeans, and the HostName field must contain the IP address of the
destination. For more information on IP addresses and name resolution, see the
Resolving host names with DNS section later in this chapter. If the Connect method
of TCPStream fails, it will throw a serverAborted exception, so be sure to catch these
exceptions.

linkServer = FindLinkByClass(iIPSwitch, LinkClass(self));
if (HasObject(linkServer))
{
 ulong useCount = UseCount(linkServer) - 1;
 SetUseCount(linkServer, useCount);
 if (useCount <= 0)
 {
 DetachLink(iIPSwitch, linkServer);
 Destroy(linkServer);
 }
}

/* means is a DialupIPMeans object, ticket is a TransferTicket */
ReplaceTextWithLiteral(HostName(means), "192.216.22.142");
SetPort(means, 80);

SetMeans(ticket, means);

/* Create the TCPStream object with default parameters */
stream = NewTransient(TCPStream_, nil);
SetStream(ticket, stream);

/* Connect the stream to the remote host */
Connect(stream, ticket);

TCP/IP Communications in Depth

General Magic Magic Internet Kit 49

Parameters can also be passed to NewTransient when creating the TCPStream
object. The only interesting parameter is the source port, which may need to be set
if required to be within a certain range. This is usually never the case, though, and
therefore should be set to zero so that IP will assign a port dynamically.

Note: Multiple streams can be created on the same data link! Just remember to keep
track of how many exist by incrementing the link server’s UseCount attribute each
time a stream is created and decrement the count when they are destroyed. Neat!

Listening for an incoming TCP connection
The above section describes how to initiate an outgoing connection, but with the
Magic Internet Kit applications can also listen for incoming connections. The high
level MIK framework does not include this functionality built-in just yet since most
applications will only want to initiate connections, but the TCPStream interface is
in place and fully functional.

To listen for an incoming connection, create the data link server as usual, but replace
the connect code with the following:

In this case, the stream will listen to port 80, the httpd port. The Listen method will
immediately return, but the next Read or Write call will block until a remote host
connects to the specified port on the device. Therefore any code following the Listen
that relies on the connection being active should be after a Read or Write call! For
example, if the application calls CountReadPending immediately following the
Listen, the Listen will return immediately and the CountReadPending will also
immediately return zero, which is probably not what the programmer wants.

Note: Due to the inherently blocking nature of listening for an incoming
connection, or doing most other communications work for that matter, this code
should not be running on the User Actor! See the Multithreading with Actors
section of this document for more information on creating and using new threads.

Using a TCP stream
TCPStream objects are used pretty much like any other CommunicationStream
subclass; CountReadPending returns the number of bytes available to read, Read
reads the bytes, and Write writes bytes.

NewTCPStreamParameters parameters;
SetUpParameters(¶meters.header, 0);
parameters.destinationIPAddress = 0;
parameters.destinationPort = 0;

/* port to listen to */
parameters.sourcePort = 80;

stream = NewTransient(TCPStream_, (Parameters*)¶meters);

Listen(stream);

TCP/IP Communications in Depth

50 Magic Internet Kit General Magic

CountReadPending
operation CountReadPending(): Unsigned, noFail;

This method is used to find out how many bytes are in the stream’s local buffer and
are therefore available for immediate reading. Reading is a synchronous operation,
so code that does not want to block while reading should always call
CountReadPending first to check how many bytes are available.

Read
operation Read(buffer: Pointer; count: Unsigned): Unsigned, noFail;

This method is used to read a number of bytes from a stream into a buffer. If the
number of bytes requested by Read are not available yet, for example the server has
not sent them, Read will block until either all the bytes are received or an error has
occurred. The return value is the number of bytes that were read, and comparing this
value to the number of bytes requested lets the application know if an error occurred;
if fewer bytes were returned than requested, then an error occurred but Read still
returned as much data as it could get.

One useful tactic when waiting for data is to block on a one character read and then
read any other pending data. For example, the following code is used in the
CujoTerm template application:

In this case, the one character read will block until either data is available or an error
occurred, for example the remote host closing the stream. When Read returns, a
check is made to make sure that Read returned a character, and if not an exception
is thrown. If the character was indeed read okay, the rest of the code will get the rest
of the pending bytes, up to 255 total, and process them.

Write
operation Write(buffer: Pointer; count: Unsigned), noFail;

count = Read(stream, &buffer, 1);

if (count != 1)
{
 Fail(serverAborted);
}
else /* count == 1, everything is peachy keen */
{
 Unsigned count = CountReadPending(stream);
 if (count != 0)
 {
 if (count > 254) count = 254;
 Read(stream, &buffer[1], count);
 }

 /* Remember that we already read one character up above! */
 count++;

 HandleBytes(client, (Pointer)buffer, count);
}

TCP/IP Communications in Depth

General Magic Magic Internet Kit 51

Write, as one can imagine, is used to write data to a stream. With TCP streams, write
will immediately return after placing the bytes into TCP’s outgoing buffer. If the
TCP stream was closed for some reason, or some other error occurred, Write will
instead throw a serverAborted exception. For this reason, all calls to Write should be
prepared to catch serverAborted exceptions and handle the error case.

Resolving host names with DNS
While IP addresses look neat, what with all those numbers and periods, humans have
a hard time remembering them. For this reason symbolic names are often assigned
to refer to IP addresses, for example the name “www.genmagic.com” currently refers
to the IP address 192.216.22.142. This feature also allows www.genmagic.com to be
repointed to a new machine without forcing users to know about the change or the
new address. All of this neat functionality is bestowed upon us by the Domain
Name System (DNS).

While DNS is very useful for resolving host names, also keep in mind that resolving
a name takes time; a UDP packet requesting the name resolution must be sent a
known name resolver, and then the response packet must be received. Fortunately,
DNS caches names once they have been resolved, but the initial lookup still takes a
second or two. Additionally, adding the DNS resolver to your Magic Cap
application increases the memory footprint by about ten kilobytes.

DNS in the Magic Internet Kit framework
When using the MIK framework, the UsesTCP class will resolve host names when
needed. Specifically, if a host name is not a properly formatted IP address, the
UsesTCP class will figure that it’s a host name that a DNS server can figure out. It
will then ask DNS if it can resolve the name and, if not, fail up to the Means classes
with a serverAborted exception. The Means classes will then return nilObject for the
stream.

To tell DNS which name resolution servers to use, add the 32-bit IP address of each
server to the list in the DNSServers attribute of the ConnectableMeans object. This
list is a FixedList object, so entries can be added with the AddUniqueElem method.
If the means object is in the application’s object instance file, entries can also be
added there.

Source Code Note: The Magic Internet Kit’s usage of DNS is contained in the
UsesTCP class implemented in Means:UsesTCP.(Def, c)

TCP/IP Communications in Depth

52 Magic Internet Kit General Magic

Using DNS manually
If your application is not using the MIK framework, which automatically handles
name resolution, you can still use DNS manually. This section will tell you how to
do it.

Source Code Note: The class definition for the DNSResolver class is found in the
TCP:DNSResolver.Def file.

Preparing for DNS lookups
The first step in preparing to use DNS is making sure that a link server is active. If
there’s no data link, DNS can’t send its request to the name resolvers. See the above
section on managing data link servers for more information on that topic. Once the
data link is up, the application needs to tell DNS which domain name resolvers to
contact. This is done using the RegisterDNS method. Here’s the code:

The server should be specified by its 32-bit IP address. If applications need to
translate dotted text IP addresses into 32-bit unsigned format, the MakeIPAddress
method of IPSwitch will do this.

Source Code Note: The IPAttributeText class translates IP addresses between dotted
text and 32-bit formats. See Means:UsesTCP.(Def, c) for the implementation of
IPAttributeText.

Much like the IPSwitch class, the DNS resolver referred to by the iDNSResolver
indexical does not need to be created or destroyed by the application. This class will
automatically create itself at package installation time.

Looking up a symbolic host name
Once DNS has at least one resolver registered and the link server is active, the
application can freely request name and address information. To convert a symbolic
host name to an IP address, use the GetHostByName method of the DNSResolver
class. Here’s an example:

In the above code, the hostName parameter is a text object containing the name to
be looked up, and the return value is the 32-bit IP address. If the name lookup fails,
a DNSLookupFailed exception will be thrown, so the application should plan
ahead and catch this exception.

RegisterDNS(iDNSResolver, 0x12345678);

ReplaceTextWithLiteral(hostName, "www.genmagic.com");

address = GetHostByName(iDNSResolver, hostName);

SPrintF(addressString, "%d.%d.%d.%d", (address>>24),
 (address>>16)&0xff, (address>>8)&0xff, address&0xff);

ReplaceTextWithLiteral(hostName, addressString);

TCP/IP Communications in Depth

General Magic Magic Internet Kit 53

Keep in mind that TCPStream’s Connect method expects the host name to be a
dotted text IP address, so the last two lines of code convert the 32-bit value into that
format and put the result back into the hostName text object.

Looking up an IP address
The process of resolving an IP address is almost identical to looking up a host name.
The GetHostByAddress method takes a 32-bit unsigned IP address and returns a
text object containing the host name associated with that address. If no name exists
a DNSLookupFailed exception is thrown.

Shutting down DNS
The iDNSResolver object will stick around in transient memory when the
application is done using it, but applications might want to unregister DNS servers
when it is done using these servers. Additionally, if the user has the ability to modify
the list of DNS servers that the application should use, a server should be
unregistered when the user specifies that it should no longer be used. To do this, call
the UnregisterDNS method. The parameters for this method are identical to that
of RegisterDNS.

Persistence of DNS
The object pointed to by the iDNSResolver indexical is located in transient
memory. This means that the object will go away whenever transient memory gets
blasted, but it will always be recreated. This means that the DNS resolver’s cache will
be cleared as well as its list of servers that were registered with the RegisterDNS
method. As a result, the application should always register its DNS servers before it
plans to use them if there is a chance that transient memory could have been reset
since the last registration.

More to follow
This chapter of the MIK Programmer’s Guide is not yet completed at this time. To
find the latest version of this document, which should be more complete by the time
you read this, check out the Magic Cap Developer Resources web pages located at:

http://www.genmagic.com/Develop/MagicCap/index.html

TCP/IP Communications in Depth

54 Magic Internet Kit General Magic

Reference

General Magic Magic Internet Kit 55

Reference

This section is not yet completed - see our web site for an update
To find the latest version of the Magic Internet Kit documentation, check out the
Magic Cap Developer Resources web pages located at:

http://www.genmagic.com/Develop/MagicCap/index.html

Reference

56 Magic Internet Kit General Magic

	Magic Internet Kit
	Introduction
	Real connectivity made real easy
	What you should already know
	About this document

	Creating a New Package
	Automated package creation
	The New Comms App dialog
	Connection types and hardware support
	Magic Internet Kit templates
	Now that you know how you’re going to communicate,...
	This section will discuss the templates that are i...
	Terminal (a.k.a. CujoTerm)
	EmptyWithFrills
	Empty

	Where to go from here

	Connecting to the World
	The ConnectableMeans class
	Methods of ConnectableMeans
	CanCreateConnection
	CreateConnection
	DestroyConnection

	CreateConnection error handling
	Using ConnectableMeans: an example
	MIK’s ConnectableMeans subclasses

	Serial communications
	ModemMeans
	MagicBusModemMeans
	SerialPortMeans

	TCP/IP communications
	DialupPPPMeans
	MagicBusPPPMeans
	XircomMeans
	Behind the scenes with TCP/IP

	Example: Finger Client
	Multithreading with Actors
	Actor concepts
	Creating an actor
	Using an actor
	Destroying an actor
	Moving between actors
	Semaphores
	Cross-actor exceptions
	RunSoon

	Actors in the Magic Internet Kit

	Serial Communications in Depth
	Using ConnectableMeans vs. low-level APIs
	Introducing the SerialServer and Modem classes
	Using the modem
	Connecting the modem
	Using a live modem connection
	Disconnecting the modem
	Detecting Loss of Carrier
	Dispelling myths and stuff to avoid
	AT commands are evil
	Cruel and unusual punishment with SetBitRate

	TCP/IP Communications in Depth
	Using ConnectableMeans vs. low-level APIs
	Link servers, protocol stacks, and streams, oh my!...
	The data link server
	Internet Protocol (IP)
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)

	Managing data link servers
	Determining if a link server is already in place
	Stating a new link server
	Using UsesTCP to create the link server
	Creating the link server by hand

	Destroying a link server
	Using UsesTCP to destroy the link server
	Destroying the link server by hand

	Creating and using TCP streams
	Creating a TCP stream and initiating a connection
	Listening for an incoming TCP connection
	Using a TCP stream
	CountReadPending
	Read
	Write

	Resolving host names with DNS
	DNS in the Magic Internet Kit framework
	Using DNS manually
	Preparing for DNS lookups
	Looking up a symbolic host name
	Looking up an IP address
	Shutting down DNS

	Persistence of DNS

	More to follow

	Reference
	This section is not yet completed - see our web si...

